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Abstract. Within the context of a model that allows for the exact calculation of the partition
function, it is shown that @-dimensional uniaxial system with dipolar interactions falls into the
same universality class as@+ 1)-dimensional, strictly short-range system.

An important feature which determines the critical behaviour of a phase transition is the
range of the interactions between the microscopic degrees of freedom. In models where these
interactions do not decay adequately fast with distance, the physics is substantially modified
compared to models described by strictly short-range interactions. Long-range interactions are
presentin magnetic systems and particularly influence the behaviour of systems with relatively
low critical temperatures (less than 300 K). Therefore, even though in most ferromagnets the
dominant interaction for magnetic order is the short-range exchange interaction, the classical
dipolar interactions cannot always be neglected. Itis well known, for example, how the critical
behaviour of a ferromagnet, is altered considerably when one considers the effect of the long-
range interaction due to pairs of magnetic dipoles in addition to the short-range spin—spin
interactions [1-8]. Specifically, in [2] renormalization group theory was applied to derive
the critical exponenty, v andn, to ordere = 4 — d, for a d-dimensional ferromagnetic
system with dipole—dipole interactions betweenditsomponent spins. These results were
extended in [3] where the Feynman-graph-expansion approach of Wilson [10] was used to
calculate the exponentto second order i, as well as to describe the behaviour of the 4-spin
correlation function. In general, the behaviour of ferromagnets with this type of long-range
interaction differs from that of ferromagnets with strictly short-range interactions, according
to the number of components of the order parameter. For example, the pioneering work of
Larkin and Khmel'nitskii [1], using Feynman-graph expansionsdos 3, showed that the
critical behaviour of a uniaxial ferromagnet with both exchange and dipolar interactions has
logarithmic corrections not expected classically. Aharony [7, 8] used exact renormalization
group (RG) equations and theexpansion (where for this particular problem= 3 — d)

to verify this, as well as to predict that the critical behaviour af-dimensional uniaxial

Ising ferromagnet with dipole—dipole interactions belongs in the same universality class as
a (d + D-dimensional, strictly short-range Ising ferromagnet [8]. In the present work, an
alternative approach will be used to confirm and generalize this result. It will be shown
that d-dimensional uniaxial systems with short-range ferromagnetic interactions as well as
long-range dipole—dipole interactions haye= 3 as the upper marginal dimension above
which mean-field behaviour fully sets in, and below (explicitly fok1d < 3) which critical
behaviour prevails. Unlike the-expansion where the validity of the results depends on the
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smallness ok, the method used here derives the result for dnyithout any constraints.
The study of such systems will be done by considering a model with reduced interactions
of fluctuations, allowing for the exact calculation of the partition function. The model is
a considerable improvement over mean-field theory, and has been previously successfully
applied to a number of different systems [9, 11-17]. The results obtained by the model are in
qualitative agreement with those obtained by RG theory, whenever there are results from both
approaches for comparison. Furthermore, through the model, unlike in RG theory, fluctuation
interactions can be controlled. Specifically, they can be easily suppressed, thus allowing one
to see the crossover to mean-field behaviour.

The system of interest has the Ginzburg—Landau-Wilson functional with a scalar order
parametes (x)

F[S(x)] = %/ddx |:1:Sz(w) +c(VS(@)? +uS*(x) — hS(x) (1)

2
_/ ddx/gS(m)S(m/)3_2(|a3 _ m/|2—d):|
x'F#x 0z

whereS(x) is a classical order parameter pointing in the direction of spatial anisotropy (the

z-axis), located at site of ad-dimensional lattice. Also; = (T — T,)/ T, whereT, is a trial

critical temperature for the order parameteis a constant external conjugate fieldyndu are

the usual constants of interactions gnid a measure of the strength of the dipole interaction.
The Fourier transform of the dipolar term for smailis [2]

82
Fuip =3 / d'x / 0 eS@S@) g5 (e — 2P

2
=-3| dq5%49 [_glq_; + 827 + g3+ g4q2} )
q#0 q

where constants resulting from integrationsdedlimensional Fourier transforms have been
absorbed in the constangs, g2, gz andga. In the Fourier transform terms of(@" +¢%) have
been dropped. Equation (2) will be used to express the partition function of the system in
momentum space.

The exact model used here is one which uses the approximation of the quartic term in the
functional (1) as follows:

/ dx $*(x) — %aZ[S(:c)] a[S(x)] = f d?x §2(x) (3)

whereV is the volume of the system. Such an approximation, first proposed by Scheeidier
[18] causes the model to consider the interaction of fluctuations with equal and antiparallel
momenta. This can be seen if one rewrites equation (1) in the momentum representation. Then
approximation (3) becomes equivalent to splitting dkifeinction, which provides momentum
conservation, into the product of twdefunctions:
8(q1*+q2+q3+qa) > 5(q1*q2)3(q3 + qa).
Using a transformation analogous to that of Hubbard—Stratonovich,

exp(—%K (&VS])) = /dx dy exp(—%K(%) +i(xy — ya))

applied to an arbitrary functioK (a/ V'), where for functional (1)K (a/V) is

a Ta uaz
Kl=Z)=2+2Z2
|4 \% V2
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the Boltzmann factor in the partition function becomes bilinear with respe§t#9. The
consequence of this relative simplification is the introduction of two new variablasd y.
The free energy functional (1) then becomes

F[S()] = %K(%) + % /OO d’x [c(VS(x))? — hS(x)] + Fuip

and after using equation (2), the partition function in momentum space takes the form

14 2hS,_o VS
Z = / DSqudyeXp|:—§<K(x) — Xy — —qV + Z “;
52 42
+qu (y +cq2+glq—; —gquZ))} 4)

q#0
where the following substitutionsg/V — x,2iy — y, ga—¢c — ¢, g3— 1 — T,
Sq/ﬁ — Sq, h/(2V) — h have been made. Furthermore, for materials with low critical
temperatures (for which dipolar interactions are most effective) or large valgesofmpared
tot, the termgqu has an insignificant contribution and it is dropped for further consideration
[8].

Consequently, all functional integrals in equation (4) may be calculated to give

1% In h? 1 2
Z:/dxdyexp—— K(x)—xy+ |yl——+—2:|n y+cqz+glq—Z .
2 1% y V q2
q#0
The summation over momentum must now be evaluated. To do so first note that
2 2
‘ \%
> I <y+cq2+glq—“2> = —d/ d’gIn <y+cq2+g1q—zz> (5)
470 q 2m)? Jazo q

and after writing the momentum integral in spherical coordinate@sdimensional space and
integrating all angles except the anisotropy amglee derive

2
/ d’q In (y +cq®+ gl%)
q#0

i /Oo d f” de[ dlsin“mn( +eq?+ qzzﬂ (6)
= y C —_

where 2r@=Y/2)T (3(d — 1)) is the result of the angular integration. Since we consider large
values ofg; compared tq, then only integrals iy-space for small values @f /¢ = coso
will contribute. Thus, by combining equations (5) and (6), and defiping g;/°c~%/2 coss

we obtain

2 -V —1/201/21~ (1d) ) 00
In(y+cq?+ q—z> = 81 2 f d / duIn (y + cg? + cu?).
; (y Ar8 s )= Goir O Gd-1) Juo g | du (v +cq®+cp?)

The above looks like ® = (d + 1)-dimensional integral with the extra(d + 1)st component

of the momentum vector. This is, in fact, the reason for the new behaviour of the uniaxial
dipolar-interaction system as will be seen in detail below. The final result of the original sum
will then be

2
> in (y tog? + g%) =V (f4() + yOu(A)

q#0



706 D Nicolaides

for which
_glfl/zc(lfD)/Zz(lfd)7.[(27d)/2(_1)(13*1)[‘ (%d)
DI (3d+1) T (3d-1D)
= Kl(c)yD/2 D # even
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fay) =
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AP? D #?2
O4(A) =

) In (cA?) D=2

whereA is a momentum cut-off.
The function®,(A) diverges whem\ — oo andD > 2. However, critical asymptotics
do not depend on a particular momentum cut-off and such a divergence is absorbed by
renormalizinge andz. This is done by defining + ©,(A) = x andtx + 2u®,(A)x = tx.
The partition function may now be written as

Z= /dx dyexp(—3VF(x,y,h))

with

2 D/2 D
h { k1(c)y # even @

F(x,y,h) =tx +ux?—yx — — +

y i2(c) yP/%In | y| D = even.
In the thermodynamic limiV — oo, the calculation of the partition function becomes exact

and can be performed using the method of steepest descent. The equilibrium free energy can
be calculated by solving forandy in the saddle-point equatiods’/dx = 0 andd F /9y = 0.

An expression for the equilibrium order paramefes given by

|:—8F(x,y,h):| 2h h
§= |2 - L,
dh ey Y y(h)

Usingd F (h)/9x = 0,3 F /3y = 0 and the expression fér(equation (8)), an equation for
the order parameter is derived. This parameter depends, among other things, on the constant
conjugate fields, the dimensionality/ of space, and the scale of microscopic interactions
of fluctuationsc. One can write these expressions fofor all possible values oD (and
consequently off), including non-integers, as shown below,

8

1(p-2
2 + L — L + 2[(1(0) ﬁ (2 ) = 0 D = Nnon-even
2u 2uS 2 S
, t h D R\ (3P-2) ol n\ (2(P-2)
+— -+ = — —|+ — =0 D =
St 2 T 2us T 2@ (s) " k2(©) <S> Sven

©)
As h — 0, whetherS has a solution and whether the behaviour of the system will be critical
or mean-field, depends on the values of the space dimensiofakty well as the scale of
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microscopic interactions. In the absence of the external figlda real solution foiS exists
only for D > 2 andr < 0 and is given by§ = \/—t/2u. This showsthaD =2 = d = 1is
the lower marginal dimension for the uniaxial dipolar system. The critical expcﬁweﬂt%.
The model finds more interesting results when the critical expahantalculated. At = 0
and ash — 0 the solutions of equations (9) are

S = (~1Diy() PP pP-21072 2 p <4
4 V3 1/3
S = (—2k2(@hIn| = D=4
( 32 D (10)
n Y3
S D> 4
(=) :

It follows from the above result thab = 4 = d = 3 is the upper marginal dimension.
Explicitly, the critical exponent has thevalué = (D+2)/(D—-2) = §=(d+3)/d -1
which is true for therange 2 D < 4 = 1 < d < 3. If, however,D > 4 = d > 3
thens = 3 which is the usual mean-field value. Finally, at= 4 = d = 3 the value
of § has logarithmic corrections. As can be seen from this discussion, within the context
of the exactly solvable model, the consequences of the dipolar interactions is to increase by
one the effective space dimension of the uniaxial system. This is also in agreement with the
result obtained within the framework of renormalization group theory [7,8]. Thus a three-
dimensional uniaxial system with dipole—dipole interactions falls into the universality class
of a four-dimensional strictly short-range system whose behaviour is mean-field with subtle
logarithmic corrections which reflect the non-mean-field behaviour that sets in fully below four
space dimensions. In the absence of the dipole—dipole interactions, which are eliminated by
takingg = 0 in equation (1), the exactly solvable model finds critical behaviour fer®2 < 4
with subtle logarithmic corrections dt= 4 and a classical mean-field behaviourdos 4 [9].
This is in accordance with RG analysis [19-22]. Itis not contradictory that within the context
of the exactly solvable model a system with a one-component order parameter, has a lower
critical dimensiond. = 2. Indeed, the functional (1) witlh = O corresponds to the classical
Ising model which hag, = 1. However, after the approximation (3) the model belongs to
the spherical model universality class and, therefore, has symméiy=O00) [23]. On the
one hand, this makes the model less realistic. However, on the other hand, knowing the effect
various perturbation terms have on non-physical models, such as the spherical one, could be
used as a qualitative basis for understanding the behaviour the same perturbation may have on
more realistic models.

Sincec is the scale of microscopic interactions of fluctuations and is also related to the
width of the fluctuation region, suppressing the fluctuations can be done in the hsito.
Then it is seen that all results reduce to strictly mean-field ones as expected regardless of
dipolar interactions.
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